
AVR Beyond Arduino
This presentation is intended for people who have experience with Arduino
projects and are looking to take their skills up a notch.

This presentation may serve as a stepping stone to introduce concepts that can be
confusing to builders reading an AVR datasheet for the first time.

This won’t make any sense to beginners and is useless to people who don’t
actually use Arduino to build things.

Topics
What is a Register?

Bitwise Operators - Change individuals bits within a register

Direct Port Access - Faster Digital Reads and Writes, multiple Pins simultaneously

Timer / Counter Modules

Change PWM Frequency - LEDs, Sound, Motor Drivers

Faster Analog Read

What is a Register?
A small place where data can be stored. The data can be an instruction, a numerical value, a character,
an address, a hardware setting, etc.

AVR chip registers can be complicated and difficult for beginners to understand. Standard Arduino
libraries do a great job hiding all the registers and settings to be more user friendly.

AVR chips used in Arduino Uno and Mega have 8-bit registers. There are many registers full of settings
that control how the chip works and can be changed by the user program.

Bitwise Operators: OR, AND
Turn on a single bit using OR “ | “

 byte myValue = B00110011 | B10000000; // answer is B10110011

 00110011
| 10000000
 10110011 Bit 7 is now on, other bits did not change

Turn off a single bit using AND “ & “

 byte myValue = B00110011 & B11111110; // answer is B00110010

 00110011
& 11111110
 00110010 Bit Zero is now off, other bits stayed the same

Bitwise Operators: <<, >>
Shift all Bits Left <<

B00000100 << 1 = B00001000
 4 << 1 = 8

B11110000 << 2 = B11000000
 240 << 2 = 192

Shift all Bits Right >>

B00000100 >> 1 = B00000010
 4 >> 1 = 2

B00000111 >> 2 = B00000001
 7 >> 2 = 1

When shifting bits, bits that are equal to 1 can be dropped off the end and are lost. The extra space
created when shifting is always filled in with Zeroes.

Arduino Pins vs AVR Ports/Pins

Arduino pins have numbers such as D0 to D13, A1 to A5 for the Uno.

AVR uses a different numbering system. Pins are grouped together into Ports and each Port has a
different letter. Each Port can have up to 8 pins, each pin having a number.
Example: PD0 = Port D, Pin 0

Different AVR chips have different features, so the AVR Port and Pin numbering changes for different
chips. Arduino tries to standardize some of these basic features.

● Arduino Uno uses the Atmega328p AVR chip. The Serial RX function is on AVR pin PD0 which
Arduino calls pin D0.

● Arduino Mega uses the Atmega2560 AVR chip. The Serial RX function is on AVR pin PE0 which
Arduino calls pin D0.

Google search for “Arduino Uno pinout” and you can find great images showing the pin mappings for
different types of Arduinos.

Direct Port Access
Arduino functions digitalRead() and digitalWrite() are robust for beginners but quite slow. These Arduino
functions have the added step of translating the Arduino pin number to the AVR pin number and also
double-check a number of other things for issues. Skipping this gets the job done 40-80x faster.

Turn on Port D Pin 0:

 PORTD = B00000001; // Turns on PD0 and turns off PD1 through PD7.

 PORTD = PORTD | B00000001; // Turns on PD0. PD1 through PD7 stay the same.

Turn off Port B Pins 1, 3, and 5:

 PORTB = PORTB & B11010101; // Turns off PB1,PB3,PB5. Others don’t change.

If your project requires several pins to be turned on or off at the same time, Direct Port Access allows
that, while the Arduino function digitalWrite() can’t help.

Direct Port Access
Direct port access is great if you want to
expand your IO using a multiplexer. Wire up
the MUX’s channel select pins to an AVR
port and the channel can be selected very
quickly.

The “4067” chip is a 16 channel analog
mutiplexer. 4 control lines are used to select
which channel is connected.

void SetMux(byte channel){
 PORTB &= 0B11110000; // clear bits PB0 to PB3
 PORTB |= channel; // write ch to bits PB0 to PB3
}

Direct Port Access
The PINx registers can be used to read 8 digital inputs at once, replacing digitalRead().

Whenever a PINx register is read, all pins of that port are read at the same time, even if they are set as
an output. If you only want to read a single pin, discard the values you don’t care about.

 myValue = PIND; // Reads PortD pins 0 through 7

 myValue = PIND & B00000001; // Reads PortD D0 through D7, D1 through D7 are discarded

 myValue = (PINB & B00001000) >> 3; // Reads PortB pin 3.

Direct Port Access
Don’t forget to set the direction of each Pin. Arduino does this using the pinMode() function. For AVR,
directly accessing the DDRn register can speed things up.

Set Port D Pin 0 as an output:

 DDRD = DDRD | B00000001; // Set pin 0 as output, other pins unaffected

Set PortB Pins 1, 3, and 5 as input:

 DDRB = DDRB & B11010101; // Sets pins 1,3,5 as inputs, other pins unaffected

If a particular pin in your project is changing direction of pins very often, then using the DDRn registers
can speed up your program.

If a pin’s direction is only setup once at the beginning of your program and never changes again, then
it’s probably better to use the Arduino pinMode() function.

Direct Port Access
Don’t forget to set the direction of each Pin. Arduino does this using the pinMode() function. For AVR,
directly accessing the DDRn register can speed things up.

Set Port D Pin 0 as an output:

 DDRD = DDRD | B00000001; // Set pin 0 as output, other pins unaffected

Set PortB Pins 1, 3, and 5 as input:

 DDRB = DDRB & B11010101; // Sets pins 1,3,5 as inputs, other pins unaffected

If a particular pin in your project is changing direction of pins very often, then using the DDRn registers
can speed up your program.

If a pin’s direction is only setup once at the beginning of your program and never changes again, then
it’s probably better to use the Arduino pinMode() function.

Timer/Counter Modules
Multipurpose hardware inside the AVR that can perform a variety of functions such as:

● Generating PWM signals: Frequency, Duty Cycle - analogWrite()
● Keeping track of time - delay(), millis()
● Generating interrupts to run a function at a specific time interval
● Counting pulses

Uno has 3 Timer/Counters

Mega has 6 Timer/Counters

Each Timer/Counter is controlled using a number of
different registers such as:
Settings: TCCRnx, OCRnx, TIMSKn
Counter: TCNTn
Outputs: OCnx, TIFRn

Counters can be 8 bit (0-255) or 16 bit (0-65535)

Timer/Counter Pin Mapping
Each Timer/Counter module is connected to specific pins.

For Atmega328p / Arduino Uno: For Atmega2560 / Arduino Mega:

Good references from Arduino:
https://www.arduino.cc/en/Tutorial/SecretsOfArduinoPWM
https://playground.arduino.cc/Main/TimerPWMCheatsheet

Timer Arduino Pins AVR Pins

0 13, 4 PB7,PG5

1 12, 11 PB6,PB5

2 10, 9 PB4,PH6

3 5, 3, 2 PE3,PE5,PE4

4 8, 7, 6 PH5,PH4,PH3

Timer Arduino Pins AVR Pins

0 6, 5 PD6,PD5

1 9, 10 PB1,PB2

2 11, 3 PB3,PD3

https://www.arduino.cc/en/Tutorial/SecretsOfArduinoPWM
https://playground.arduino.cc/Main/TimerPWMCheatsheet

PWM Modes
AVR Counters have different modes of counting. This results in different PWM signals being generated.

Fast PWM only counts up, and rolls-over at the
top creating a sawtooth wave. The front edges of
each PWM pulse are equally spaced.

Phase Correct PWM counts up and down creating a
triangle wave. The middle of each PWM pulse is equally
spaced.

For applications like blinky LEDs, servos, and motor drivers, the choice of PWM mode generally doesn’t matter
other than it cuts the PWM frequency in half.

By default, Arduino operates all the Timers in Fast PWM mode.

Clock Source
Every counter has its own clock. The counter increments or decrements once for every tick of the “clock”. The
clock source may be the main system clock (16MHz crystal) or an external clock source coming from a pin.

The clock source can be changed using the Clock Select bits of the TCCRnB register. These vary slightly from one
Timer to another. Not all Timers are capable of having an external clock source. Different timers have different
prescaler options available.

ATmega328p Timer0 Clock Source Options:

Off
Same as XTAL (16 MHz)
⅛ of 16 MHz = 2 MHz
1/64 of 16 MHz = 250 kHz
1/256 of 16 MHz = 62.5 kHz
1/1024 of 16 MHz = 15.6 kHz
Pin T0 = PD4 = Arduino D4

Change PWM Frequency using Prescaler
When using the internal clock source, the Timer/Counter clock is equal to the system clock (16 MHz)
divided by a selected Prescaler value.

Every tick of the Timer’s clock increments the Counter by 1 until it reaches its size limit (256 for 8-bit
counter)

 PWM Frequency = System Clock / Prescaler / Counter Size = 16 MHz / 64 / 256 = 976.56 Hz

Bits 0 to 2 of the TCCRnB Register set the Prescaler factor

TCCR0B = TCCR0B & B11111000 | B00000011; // set timer 0 prescaler to 64 for 976.56 Hz

Setting prescaler to 1, Timer Clock = System Clock. PWM Frequency = 16 MHz / 1 / 256 = 62.5 kHz

TCCR0B = TCCR0B & B11111000 | B00000001; // set timer 0 prescaler to 1 for 62500 Hz

Prescalers options are defined in the datasheet and allow coarse adjustment of the frequency.

Not all Timers have the same prescaler options available, check datasheet for details.

Set Prescalers - ATMEGA328p (Uno,Nano)
//------------------------------ Set PWM frequency for D5 & D6 using Timer0 ------------------------------

TCCR0B = TCCR0B & B11111000 | B00000001; // set timer 0 divisor to 1 for PWM frequency of 62500.00 Hz

TCCR0B = TCCR0B & B11111000 | B00000010; // set timer 0 divisor to 8 for PWM frequency of 7812.50 Hz

TCCR0B = TCCR0B & B11111000 | B00000011; // set timer 0 divisor to 64 for PWM frequency of 976.56 Hz Default

TCCR0B = TCCR0B & B11111000 | B00000100; // set timer 0 divisor to 256 for PWM frequency of 244.14 Hz

TCCR0B = TCCR0B & B11111000 | B00000101; // set timer 0 divisor to 1024 for PWM frequency of 61.04 Hz

//------------------------------ Set PWM frequency for D9 & D10 using Timer1 ------------------------------

TCCR1B = TCCR1B & B11111000 | B00000001; // set timer 1 divisor to 1 for PWM frequency of 31372.55 Hz

TCCR1B = TCCR1B & B11111000 | B00000010; // set timer 1 divisor to 8 for PWM frequency of 3921.16 Hz

TCCR1B = TCCR1B & B11111000 | B00000011; // set timer 1 divisor to 64 for PWM frequency of 490.20 Hz Default

TCCR1B = TCCR1B & B11111000 | B00000100; // set timer 1 divisor to 256 for PWM frequency of 122.55 Hz

TCCR1B = TCCR1B & B11111000 | B00000101; // set timer 1 divisor to 1024 for PWM frequency of 30.64 Hz

//------------------------------ Set PWM frequency for D3 & D11 using Timer 2 ------------------------------

TCCR2B = TCCR2B & B11111000 | B00000001; // set timer 2 divisor to 1 for PWM frequency of 31372.55 Hz

TCCR2B = TCCR2B & B11111000 | B00000010; // set timer 2 divisor to 8 for PWM frequency of 3921.16 Hz

TCCR2B = TCCR2B & B11111000 | B00000011; // set timer 2 divisor to 32 for PWM frequency of 980.39 Hz

TCCR2B = TCCR2B & B11111000 | B00000100; // set timer 2 divisor to 64 for PWM frequency of 490.20 Hz Default

TCCR2B = TCCR2B & B11111000 | B00000101; // set timer 2 divisor to 128 for PWM frequency of 245.10 Hz

TCCR2B = TCCR2B & B11111000 | B00000110; // set timer 2 divisor to 256 for PWM frequency of 122.55 Hz

TCCR2B = TCCR2B & B11111000 | B00000111; // set timer 2 divisor to 1024 for PWM frequency of 30.64 Hz

Set Prescalers - ATMEGA2560 (Mega)
//------------------------------ Set PWM frequency for D4 & D13 ------------------------------

TCCR0B = TCCR0B & B11111000 | B00000001; // set timer 0 divisor to 1 for PWM frequency of 62500.00 Hz

TCCR0B = TCCR0B & B11111000 | B00000010; // set timer 0 divisor to 8 for PWM frequency of 7812.50 Hz

TCCR0B = TCCR0B & B11111000 | B00000011; // set timer 0 divisor to 64 for PWM frequency of 976.56 Hz Default

TCCR0B = TCCR0B & B11111000 | B00000100; // set timer 0 divisor to 256 for PWM frequency of 244.14 Hz

TCCR0B = TCCR0B & B11111000 | B00000101; // set timer 0 divisor to 1024 for PWM frequency of 61.04 Hz

//------------------------------ Set PWM frequency for D11 & D12 -----------------------------

TCCR1B = TCCR1B & B11111000 | B00000001; // set timer 1 divisor to 1 for PWM frequency of 31372.55 Hz

TCCR1B = TCCR1B & B11111000 | B00000010; // set timer 1 divisor to 8 for PWM frequency of 3921.16 Hz

TCCR1B = TCCR1B & B11111000 | B00000011; // set timer 1 divisor to 64 for PWM frequency of 490.20 Hz Default

TCCR1B = TCCR1B & B11111000 | B00000100; // set timer 1 divisor to 256 for PWM frequency of 122.55 Hz

TCCR1B = TCCR1B & B11111000 | B00000101; // set timer 1 divisor to 1024 for PWM frequency of 30.64 Hz

//------------------------------ Set PWM frequency for D9 & D10 ------------------------------

TCCR2B = TCCR2B & B11111000 | B00000001; // set timer 2 divisor to 1 for PWM frequency of 31372.55 Hz

TCCR2B = TCCR2B & B11111000 | B00000010; // set timer 2 divisor to 8 for PWM frequency of 3921.16 Hz

TCCR2B = TCCR2B & B11111000 | B00000011; // set timer 2 divisor to 32 for PWM frequency of 980.39 Hz

TCCR2B = TCCR2B & B11111000 | B00000100; // set timer 2 divisor to 64 for PWM frequency of 490.20 Hz Default

TCCR2B = TCCR2B & B11111000 | B00000101; // set timer 2 divisor to 128 for PWM frequency of 245.10 Hz

TCCR2B = TCCR2B & B11111000 | B00000110; // set timer 2 divisor to 256 for PWM frequency of 122.55 Hz

TCCR2B = TCCR2B & B11111000 | B00000111; // set timer 2 divisor to 1024 for PWM frequency of 30.64 Hz

Set Prescalers - ATMEGA2560 (Mega)
//------------------------------ Set PWM frequency for D2, D3 & D5 ---------------------------

TCCR3B = TCCR3B & B11111000 | B00000001; // set timer 3 divisor to 1 for PWM frequency of 31372.55 Hz

TCCR3B = TCCR3B & B11111000 | B00000010; // set timer 3 divisor to 8 for PWM frequency of 3921.16 Hz

TCCR3B = TCCR3B & B11111000 | B00000011; // set timer 3 divisor to 64 for PWM frequency of 490.20 Hz Default

TCCR3B = TCCR3B & B11111000 | B00000100; // set timer 3 divisor to 256 for PWM frequency of 122.55 Hz

TCCR3B = TCCR3B & B11111000 | B00000101; // set timer 3 divisor to 1024 for PWM frequency of 30.64 Hz

//------------------------------- Set PWM frequency for D6, D7 & D8 ---------------------------

TCCR4B = TCCR4B & B11111000 | B00000001; // set timer 4 divisor to 1 for PWM frequency of 31372.55 Hz

TCCR4B = TCCR4B & B11111000 | B00000010; // set timer 4 divisor to 8 for PWM frequency of 3921.16 Hz

TCCR4B = TCCR4B & B11111000 | B00000011; // set timer 4 divisor to 64 for PWM frequency of 490.20 Hz Default

TCCR4B = TCCR4B & B11111000 | B00000100; // set timer 4 divisor to 256 for PWM frequency of 122.55 Hz

TCCR4B = TCCR4B & B11111000 | B00000101; // set timer 4 divisor to 1024 for PWM frequency of 30.64 Hz

//------------------------------- Set PWM frequency for D44, D45 & D46 ------------------------

TCCR5B = TCCR5B & B11111000 | B00000001; // set timer 5 divisor to 1 for PWM frequency of 31372.55 Hz

TCCR5B = TCCR5B & B11111000 | B00000010; // set timer 5 divisor to 8 for PWM frequency of 3921.16 Hz

TCCR5B = TCCR5B & B11111000 | B00000011; // set timer 5 divisor to 64 for PWM frequency of 490.20 Hz Default

TCCR5B = TCCR5B & B11111000 | B00000100; // set timer 5 divisor to 256 for PWM frequency of 122.55 Hz

TCCR5B = TCCR5B & B11111000 | B00000101; // set timer 5 divisor to 1024 for PWM frequency of 30.64 Hz

PWM Frequency Fine Tuning
The Arduino Tone() library allows you to choose an exact frequency, but the duty cycle is fixed at 50%.

Some Timers allow precise control of both Frequency and Duty Cycle.
● Atmega328p: Timer 1 using Uno/Nano pins 9 (OC1A) and 10 (OC1B).
● Atmega2560: Timers 1; 3; 4; 5. Mega pins 11,12; 2,3,5; 6,7,8; 44,45,46; respectively

These are all 16-bit Timer/Counters - they count from 0 up to 65535 (216 - 1)

In Waveform Generation Mode 10, the TOP of the counter is no longer 65535, it is whatever you set it to using
register ICRx. Changing the value in ICRx allows a specific frequency to be dialed in.

The OCRnx registers are still used to set the duty cycle, but must be less than the value of ICRx

Waveform Generation Modes
WGM options vary for different timers.

16 bit timers like Timer 1 on the
ATmega328p (Arduino Uno) and Timers
1, 3 and 4 on the Mega2560 offer many
options.

Check the datasheet for your AVR chip
to see what options are available for
each Timer.

Timer1 Example Code - 20 kHz
void setup() {
 // Configure Timer 1 for PWM @ Alternate Frequency
 TCCR1A = B10100010; // Set WGM to Mode 10 (Phase Correct PWM), Set COM1A1 and COM1B1 (Non-Inverted PWM on Ch A and B)
 TCCR1B = B00010001; // Set WGM to Mode 10 (Phase Correct PWM), Set CS10 (Prescaler = 1)
 ICR1 = 400; // Freq = System Clock / Prescaler / Counter TOP / 2 = 16 MHz / 1 / 400 / 2 = 20kHz
 TCNT1 = 0; // reset counter to 0

 // Set the PWM pins as output.
 pinMode(9, OUTPUT);
 pinMode(10, OUTPUT);
}

void loop() {
 myAnalogWrite(9, 320); // 320/400 = 80% duty cycle
 myAnalogWrite(10, 80); // 80/400 = 20% duty cycle
}

void myAnalogWrite(int pin, int value) { // Sets the duty cycle for pins 9 and 10
 if (pin == 9) OCR1A = value;
 If (pin == 10) OCR1B = value;
}

Take a look a the Arduino Playground library for Timer1: https://playground.arduino.cc/Code/Timer1

Complimentary PWM
Some applications call for two PWM pins to have the same frequency and duty cycle with one pin inverted.

This can be useful for driving an H-Bridge circuit connected to a motor, speaker, etc.

The COMnx[1:0] bits in the TCCRnA register can be used to set the PWM pin output to normal or inverted mode

// Set TCCR1A bit 6 (COM1A0) to 1 and bit 7 (COM1A1) to 1 so that OC1A (Arduino Pin 9) is inverted
TCCR1A = (TCCR1A & 0b00111111) | 0b11000000;

// Set TCCR1A bit 4 COM1B0) to 0 and bit 5 (COM1B1) to 1 so that OC2A (Arduino Pin 10) is non-inverted
TCCR1A = (TCCR1A & 0b11001111) | 0b00100000;

TCCR1B = (TCCR1B & 0b11111000) | 0b00000001; // Set the prescaler
TCCR1A = (TCCR1A & 0b11111100) | 0b00000010; // Set the PWM Mode, can use Phase-Correct PWM or Fast-PWM Mode
TCCR1B = (TCCR1B & 0b11100111) | 0b00010000; // Set the PWM Mode, can use Phase-Correct PWM or Fast-PWM Mode
ICR1 = 400; // PWM Mode is set to Mode 10, so we use ICR1 registers to set the frequency. 16 MHz / 1 / 400 / 2 = 20kHz
OCR1A = 300; // Set the duty cycle for OC1A (Pin 9) to a value between 0 and 400
OCR1B = OCR1A; // Set the duty cycle for OC1B (Pin 10) to be the same as Pin 9

Timer Limitations
Timers are a powerful but limited resource. It’s possible that two Libraries try to use a single timer - one or both
will have problems. When using a library, find out if it uses any Timers.

● The millis() and delay() functions use Timer0. If Timer0 is changed from the default 976.56 Hz, then millis()
and delay() will not do what you expect them to. If you change the WGM of Timer0, calling either function
can hang your program.

● The servo() library uses Timer1 and disables PWM functionality on the associated PWM pins. If using
Mega2560 and >24 servos, Timers 3 and 4 may also be affected.

○ https://www.arduino.cc/en/Reference/servo

● The tone() library uses Timers. It starts with Timer2 but can generate multiple tones by taking over several
timers.

○ https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
○ https://github.com/bhagman/Tone#ugly-details

https://www.arduino.cc/en/Reference/servo
https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
https://github.com/bhagman/Tone#ugly-details

Faster Analog to Digital Conversion (ADC)
The ADC module has a clock source that is connected to the 16 MHz system clock by a prescaler.
Changing the value of the prescaler changes how much time it takes to complete an A-D conversion

Per the manufacturer’s recommendation, Arduino libraries set the ADC prescaler to 128 so the ADC clock
runs at 16 MHz / 128 = 125 kHz. One ADC conversion cycle takes 13 ticks of the ADC clock.

 ADC Sample Rate = System Clock / ADC Prescaler / 13 = 16 MHz / 128 / 13 = 9615 Hz default sample rate
 ADC Sample Time = 1 / Sample Rate = 104 micro-seconds

The default prescaler of 128 used by Arduino maximizes the
accuracy of the ADC but is the slowest available option.

Faster conversions can be achieved by reducing the prescaler.
Setting the prescaler to 64 doubles the conversion speed and is
quite safe for most applications.

 // In the setup() function...
 ADCSRA = ADCSRA & B11111000 | B00000110; // Set ADC prescaler to 64

Even faster conversion speeds are possible but there is a catch...

Analog Source Impedance
The ADC module uses a sample and hold capacitor
that needs to be charged by the analog input. It takes
time to charge this capacitor. Speeding up the ADC
clock rate reduces the amount of time spent charging
and can result in inaccurate readings.

Analog input sources with an impedance of 10k ohm
or less are ideal.

For example, the popular QTR-8A line following
sensor from Pololu has an output impedance of 47k
ohm. This is above the 10k ohm recommended for
best performance.

Pololu QTR-8A Line
Sensor Output Circuit

The good news is that most robots don’t require 10-bit accuracy from every sensor. If
you only need ~6 bits of accuracy, crank up the ADC clock to 1 MHz and don’t worry
about it.

Even Faster Analog to Digital Conversion (ADC)
There are two options for speeding up the ADC clock while maintaining quality of the readings
 // First, put this in your setup() function to set the prescaler
 ADCSRA = ADCSRA & B11111000 | B00000100; // Set ADC prescaler to 16 - ADC clock is 1 MHz

Option 1: Call analogRead() twice, disregard first reading
 // Whenever reading an analog voltage in your program, read twice like this...
 analogRead(sensorPin); // don’t do anything with the first reading
 int mySensor = analogRead(sensorPin); // keep the second reading

Option 2: Replace analogRead() with your own custom function with extra delay for charging capacitor
 int myAnalogRead(uint8_t pin){
 #if defined(ADCSRB) && defined(MUX5)
 ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5); // This is for the Mega, A8 to A15
 #endif
 ADMUX = (0x01 << 6) | (pin & 0x07);
 delayMicroseconds(10); // Extra Delay Here. Test to figure out how little you can get away with.
 sbi(ADCSRA, ADSC);
 while (bit_is_set(ADCSRA, ADSC));
 uint8_t low = ADCL;
 return (ADCH << 8) | low;
 }

Measure VCC using internal 1.1V Reference
Atmega328p and Atmega2560 have an internal 1.1V reference that can be read by the ADC. When
powering the AVR directly from a 3.3 to 5V battery, we can use this reference voltage to back-calculate the
battery’s voltage on VCC.

uint32_t readVcc() { // Read 1.1V reference against AVcc
 // set the reference to Vcc and the measurement to the internal 1.1V reference
 ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
 delay(4); // Wait for Vref to settle
 ADCSRA |= _BV(ADSC); // Start first conversion. First conversion is not saved.
 while (bit_is_set(ADCSRA,ADSC)); // wait for measurement to complete
 ADCSRA |= _BV(ADSC); // Start second conversion.
 while (bit_is_set(ADCSRA,ADSC)); // wait for measurement to complete
 uint8_t low = ADCL; // must read ADCL first - it then locks ADCH
 uint8_t high = ADCH; // unlocks both
 uint32_t result = (high<<8) | low;
 const float internalRef = 1.1; // The internal 1.1V ref is rated for +/- 10% accuracy. This can be manually
calibrated for each AVR chip if more accuracy is needed.
 // Conversion Factor to Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
 const uint32_t scale_constant = internalRef * 1023 * 1000;
 result = scale_constant / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
 return result; // Vcc in millivolts
}

Further Investigation

Inspect the Arduino’s user-friendly functions by searching your Arduino
folder for the following files:

Default settings and timing functions: wiring.c
Digital functions: wiring_digital.c
Analog functions: wiring_analog.c

Was this useful?

Potential Future Topics:
Measuring how long code takes to run

Avoiding Division

Using I2C and/or Serial to communicate from one Arduino to another

Storing data in EEPROM

Low Power modes

